Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(2): 47, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420828

RESUMO

BACKGROUND: The leaves of Origanum majorana (O. majorana) are traditionally renowned for treating diarrhea and gut spasms. This study was therefore planned to evaluate its methanolic extract. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the phytochemicals, and Swiss albino mice were used for an in vivo antidiarrheal assay. Isolated rat ileum was used as an ex vivo assay model to study the possible antispasmodic effect and its mechanism(s). RESULTS: The GC-MS analysis of O. majorana detected the presence of 21 compounds, of which alpha-terpineol was a major constituent. In the antidiarrheal experiment, O. majorana showed a substantial inhibitory effect on diarrheal episodes in mice at an oral dosage of 200 mg/kg, resulting in 40% protection. Furthermore, an oral dosage of 400 mg/kg provided even greater protection, with 80% effectiveness. Similarly, loperamide showed 100% protection at oral doses of 10 mg/kg. O. majorana caused complete inhibition of carbachol (CCh, 1 µM) and high K+ (80 mM)-evoked spasms in isolated ileal tissues by expressing significantly higher potency (p < 0.05) against high K+ compared to CCh, similar to verapamil, a Ca++ antagonist. The verapamil-like predominant Ca++ ion inhibitory action of O. majorana was further confirmed in the ileal tissues that were made Ca++-free by incubating the tissues in a physiological salt solution having ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The preincubation of O. majorana at increasing concentrations (0.3 and 1 mg/mL) shifted towards the right of the CaCl2-mediated concentration-response curves (CRCs) with suppression of the maximum contraction. Similarly, verapamil also caused non-specific suppression of Ca++ CRCs towards the right, as expected. CONCLUSIONS: Thus, this study conducted an analysis to determine the chemical constituents of the leaf extract of O. majorana and provided a detailed mechanistic basis for the medicinal use of O. majorana in hyperactive gut motility disorders.


Assuntos
Antidiarreicos , Origanum , Ratos , Camundongos , Animais , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Antidiarreicos/química , Jejuno , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Óleo de Rícino/farmacologia , Óleo de Rícino/uso terapêutico , Diarreia/tratamento farmacológico , Verapamil/farmacologia , Verapamil/uso terapêutico , Canais de Cálcio , Espasmo/tratamento farmacológico
2.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 36-44, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158691

RESUMO

Inflammatory bowel disease (IBD) is a term utilized to illustrate two different chronic disorders of the gastro-intestinal tract i.e., Crohn's disease and ulcerative colitis. The symptoms of IBD are mainly characterized by inflammation, including abdominal pain, chronic diarrhoea, weight loss, shortening of the colon and rectal bleeding. The objective of this study was to evaluate the antimicrobial activity and Gas Chromatography-Mass Spectrometry (GC-MS) analysis of herbs used in the treatment of IBD in Saudi Arabia. Ethanolic extracts of five different herbs from Saudi Arabia namely Pimpinella anisum (Anise), Foeniculum vulgare (Fennel), Matricaria chamomilla (Chamomile), Linum usitatissimum (Linseed), and Punica granatum (Pomegranate) were prepared by Soxhlet extraction. The systemic chemical composition of the extracts was identified by GC-MS with their relative concentrations. The ethanolic extract of P. anisum, F. vulgare, M. chamomilla, L. usitatissimum, and P. granatum showed the presence of 35, 42, 34, 37, and 47 chemical components in these extracts, respectively. The five extracts and an equal mixture of them were examined for their antimicrobial activity by broth dilution method against different organisms. These included Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa) bacteria and one yeast (Candida albicans). P. anisum, F. vulgare, M. chamomilla, L. usitatissimum, P. granatum and the mixture of all five extracts had good activity against E. coli (MIC=3.125, 0.050, 6.25, 0.050 and 0.100 mg/ml, respectively). P. granatum also had a MIC of 3.125 mg/ml against S. aureus. In conclusion. the plants' extracts and an equal mixture of them showed a narrow spectrum of antimicrobial activity against S. aureus, K. pneumoniae, P. mirabilis, P. aeruginosa and C. albicans.


Assuntos
Anti-Infecciosos , Doenças Inflamatórias Intestinais , Plantas Medicinais , Plantas Medicinais/química , Staphylococcus aureus , Escherichia coli , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Antibacterianos/química
3.
Toxicol Res (Camb) ; 12(5): 775-782, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915471

RESUMO

Hexaconazole is widely used in agricultural work, and it has been observed that it has potential to disrupt endocrine function and it has also capacity of bioaccumulation. In this study, we examined how the hexaconazole disrupts the usual balance of acetylcholinesterase. It has been already reported that heavy pesticide exposures may be a reason for several mental illnesses because these pesticides may disrupt normal balance of acetylcholinesterase. In this paper, we have done a complete molecular and dynamics analysis to understand the behavior of hexaconazole with acetylcholinesterase so that its toxicological aspect may be explored. Our findings revealed that hexaconazole has potency to interact with acetylcholinesterase in a stable manner. The binding energy of hexaconazole was found to be -7.95 kcal/mol. However, chlorpyrifos, known inhibitors of acetylcholinesterase, has binding energy of -7.17 kcal/mol. With respect to stability analysis, hexaconazole has similar stability like chlorpyrifos. Root-mean-square deviation, root-mean-square fluctuation, radius of gyration, hydrogen bonding, and solvent accessible surface area were similar to chlorpyrifos. In addition, density functional theory computations analysis reveals that hexaconazole is energetically stable like chlorpyrifos, which is necessary for establishing a stable ligand-protein complex. The result of this complete molecular analysis reveals that hexaconazole may disrupt the acetylcholinesterase balance, which leads to mental illness.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38004496

RESUMO

Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3-O-glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether. Quercetin has antioxidant, anti-inflammatory, cardioprotective, antiviral, and antibacterial effects. It is found to be beneficial against cardiovascular diseases, cancer, diabetes, neuro-degenerative diseases, allergy asthma, peptic ulcers, osteoporosis, arthritis, and eye disorders. In pre-clinical and clinical investigations, its impacts on various signaling pathways and molecular targets have demonstrated favorable benefits for the activities mentioned above, and some global clinical trials have been conducted to validate its therapeutic profile. It is also utilized as a nutraceutical due to its pharmacological properties. Although quercetin has several pharmacological benefits, its clinical use is restricted due to its poor water solubility, substantial first-pass metabolism, and consequent low bioavailability. To circumvent this limited bioavailability, a quercetin-based nanoformulation has been considered in recent times as it manifests increased quercetin uptake by the epithelial system and enhances the delivery of quercetin to the target site. This review mainly focuses on pharmacological action, clinical trials, patents, marketed products, and approaches to improving the bioavailability of quercetin with the use of a nanoformulation.

5.
ACS Omega ; 8(36): 32271-32293, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37780202

RESUMO

Daidzein (DDZ) is a well-known nutraceutical supplement belonging to the class of isoflavones. It is isolated from various sources such as alfalfa, soybean, and red clover. It demonstrates a broad array of pharmacological/beneficial properties such as cardiovascular exercise, cholesterol reduction, and anticancer, antifibrotic, and antidiabetic effects, which make it effective in treating a wide range of diseases. Its structure and operation are the same as those of human estrogens, which are important in preventing osteoporosis, cancer, and postmenopausal diseases. It is thus a promising candidate for development as a phytopharmaceutical. Addressing safety, efficacy, and physicochemical properties are the primary prerequisites. DDZ is already ingested every day in varying amounts, so there should not be a significant safety risk; however, each indication requires a different dose to be determined. Some clinical trials are already being conducted globally to confirm its safety, efficacy, and therapeutic potential. Furthermore, as a result of its therapeutic influence on health, in order to establish intellectual property, patents are utilized. In light of the vast potential of eugenol, this review presents a detailed data collection on DDZ to substantiate the claim to develop it in the therapeutic category.

6.
Molecules ; 28(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836779

RESUMO

In the current study, we described the synthesis of ten new 5-(3-Bromophenyl)-N-aryl-4H-1,2,4-triazol-3-amine analogs (4a-j), as well as their characterization, anticancer activity, molecular docking studies, ADME, and toxicity prediction. The title compounds (4a-j) were prepared in three steps, starting from substituted anilines in a satisfactory yield, followed by their characterization via spectroscopic techniques. The National Cancer Institute (NCI US) protocol was followed to test the compounds' (4a-j) anticancer activity against nine panels of 58 cancer cell lines at a concentration of 10-5 M, and growth percent (GP) as well as percent growth inhibition (PGI) were calculated. Some of the compounds demonstrated significant anticancer activity against a few cancer cell lines. The CNS cancer cell line SNB-75, which showed a PGI of 41.25 percent, was discovered to be the most sensitive cancer cell line to the tested compound 4e. The mean GP of compound 4i was found to be the most promising among the series of compounds. The five cancer cell lines that were found to be the most susceptible to compound 4i were SNB-75, UO-31, CCRF-CEM, EKVX, and OVCAR-5; these five cell lines showed PGIs of 38.94, 30.14, 26.92, 26.61, and 23.12 percent, respectively, at 10-5 M. The inhibition of tubulin is one of the primary molecular targets of many anticancer agents; hence, the compounds (4a-j) were further subjected to molecular docking studies looking at the tubulin-combretastatin A-4 binding site (PDB ID: 5LYJ) of tubulin. The binding affinities were found to be efficient, ranging from -6.502 to -8.341 kcal/mol, with two major electrostatic interactions observed: H-bond and halogen bond. Ligand 4i had a binding affinity of -8.149 kcal/mol with the tubulin-combretastatin A-4 binding site and displayed a H-bond interaction with the residue Asn258. The ADME and toxicity prediction studies for each compound were carried out using SwissADME and ProTox-II software. None of the compounds' ADME predictions showed that they violated Lipinski's rule of five. All of the compounds were also predicted to have LD50 values between 440 and 500 mg/kg, putting them all in class IV toxicity, according to the toxicity prediction. The current discovery could potentially open up the opportunity for further developments in cancer.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Aminas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Estrutura Molecular
7.
Cancers (Basel) ; 15(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760469

RESUMO

The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.

8.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627222

RESUMO

Mangiferin (MGF), a xanthone derived from Mangifera indica L., initially employed as a nutraceutical, is now being explored extensively for its anticancer potential. Scientists across the globe have explored this bioactive for managing a variety of cancers using validated in vitro and in vivo models. The in vitro anticancer potential of this biomolecule on well-established breast cancer cell lines such as MDA-MB-23, BEAS-2B cells and MCF-7 is closer to many approved synthetic anticancer agents. However, the solubility and bioavailability of this xanthone are the main challenges, and its oral bioavailability is reported to be less than 2%, and its aqueous solubility is also 0.111 mg/mL. Nano-drug delivery systems have attempted to deliver the drugs at the desired site at a desired rate in desired amounts. Many researchers have explored various nanotechnology-based approaches to provide effective and safe delivery of mangiferin for cancer therapy. Nanoparticles were used as carriers to encapsulate mangiferin, protecting it from degradation and facilitating its delivery to cancer cells. They have attempted to enhance the bioavailability, safety and efficacy of this very bioactive using drug delivery approaches. The present review focuses on the origin and structure elucidation of mangiferin and its derivatives and the benefits of this bioactive. The review also offers insight into the delivery-related challenges of mangiferin and its applications in nanosized forms against cancer. The use of a relatively new deep-learning approach to solve the pharmacokinetic issues of this bioactive has also been discussed. The review also critically analyzes the future hope for mangiferin as a therapeutic agent for cancer management.

9.
3 Biotech ; 13(9): 318, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37641691

RESUMO

Cymbopogon citratus (DC) stapf. (Gramineae) is a herb known worldwide as lemongrass. The oil obtained, i.e., lemongrass oil has emerged as one among the most relevant natural oils in the pharmaceutical industry owing to its extensive pharmacological and therapeutic benefits including antioxidant, antimicrobial, antiviral and anticancer properties. However, its usage in novel formulations is constrained because of its instability and volatility. To address these concerns, the present study aims to formulate lemongrass-loaded SLN (LGSLN) using hot water titration technique. In the Smix, Tween 80 was selected as a surfactant component, while ethanol was taken as a co-surfactant. Different ratios of Smix (1:1, 1:2, 1:3, 2:1 and 3:1) were utilized to formulate LG-loaded SLN. The results indicated the fact that the LGSLN formulation (abbreviated as LGSLN1), containing lipid phase 10% w/w (i.e., LG 3.33% and SA 6.67%), Tween 80 (20% w/w), ethanol (20% w/w) and distilled water (50% w/w), revealed suitable nanometric size (142.3 ± 5.96 nm) with a high zeta potential value (- 29.12 ± 1.7 mV) and a high entrapment efficiency (77.02 ± 8.12%). A rapid drug release (71.65 ± 5.33%) was observed for LGSLN1 in a time span of 24 h. Additionally, the highest values for steady-state flux (Jss; 0.6133 ± 0.0361 mg/cm2/h), permeability coefficient (Kp; 0.4573 ± 0.0141 (cm/h) × 102) and enhancement ratio (Er; 13.50) was also conferred by LGSLN1. Based on in vitro study results, the developed SLN appeared as a potential carrier for enhanced topical administration of lemongrass oil. The observed results also indicated the fact that the phyto-cosmeceutical prospective of the nanolipidic carrier for topical administration of lemongrass oil utilizing pharmaceutically acceptable components can be explored further for widespread clinical applicability. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03726-5.

10.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630338

RESUMO

We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.


Assuntos
Fenol , Fenóis , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Antibacterianos/farmacologia
11.
J AOAC Int ; 106(5): 1180-1189, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307094

RESUMO

BACKGROUND: Linezolid (LNZ) is extremely prone to resistance. The development of resistance to LNZ should be taken into consideration when selecting this drug as a therapeutic option. It is well established that reactive oxygen species (ROS) generated by iron oxide nanoparticles (MNPs) could kill the infecting bacteria. So, we hypothesized the synergistic antibacterial effect of iron oxide nanoparticles and LNZ. OBJECTIVE: To study the release and antibacterial effects of LNZ-loaded superparamagnetic iron oxide nanoparticles (SPIONs) on Staphylococcus aureus and Streptococcus pneumoniae. METHOD: Ferrofluid containing SPIONs was synthesized via chemical co-precipitation method and stabilized by sodium lauryl sulphate (SLS). SPIONs were then loaded with LNZ and characterized for particle size, FT-IR, XRD, and entrapment efficiency. Further antibacterial activity of SPIONs and LNZ-loaded SPIONs was investigated. For the in vitro release findings, HPLC analytical method development and validation were performed. RESULTS: Isolation of LNZ was accomplished on a C-18 column with methanol-TBHS (tetra butyl ammonium hydrogen sulphate, 50:50, v/v). The eluate was monitored at 247 nm with a retention time of 4.175 min. The MNP's DLS measurement revealed monodispersed particles with an average size of 16.81 ± 1.07 nm and PDI 0.176 ± 0.012. In optimized formulation, 25 ± 1.75% (w/w) of the drug was found to be entrapped. XRD revealed uniform coating of oleic acid covering the entire magnetic particles' surface with no change in its crystallinity. An effective antimicrobial activity was observed at the lowered dose of drug. CONCLUSIONS: A robust HPLC method was developed to quantify the LNZ in MNPs, and outcomes showed that the reduced dose of LNZ incorporated in SPIONs was able to show similar activity as the marketed product. HIGHLIGHTS: Successfully reduction of the dose of LNZ was established with the aid of biocompatible MNPs to attain the equivalent antibacterial activity.


Assuntos
Antibacterianos , Nanopartículas de Magnetita , Linezolida/farmacologia , Cromatografia Líquida de Alta Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química
12.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36771843

RESUMO

The goal of current research was to develop a new form of effective drug, curcumin-loaded solid lipid nanoparticles (Cur-SLNs) and test its efficacy in the treatment of lung cancer. Different batches of SLNs were prepared by the emulsification-ultrasonication method. For the optimization of formulation, each batch was evaluated for particle size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). The formulation components and process parameters largely affected the quality of SLNs. The SLNs obtained with particle size, 114.9 ± 1.36 nm; PI, 0.112 ± 0.005; ZP, -32.3 ± 0.30 mV; EE, 69.74 ± 2.03%, and DL, 0.81 ± 0.04% was designated as an optimized formulation. The formulation was freeze-dried to remove excess water to improve the physical stability. Freeze-dried Cur-SLNs showed 99.32% of drug release and demonstrated a burst effect trailed by sustained release up to 120 h periods. The erythrocyte toxicity study of Cur-SLNs and its components demonstrated moderate hemolytic potential towards red blood cells (RBCs). The cytotoxic potential of the formulation and plain curcumin was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against A549 cell line. After 48 h of incubation, Cur-SLNs demonstrated more cytotoxicity (IC50 = 26.12 ± 1.24 µM) than plain curcumin (IC50 = 35.12 ± 2.33 µM). Moreover, the cellular uptake of curcumin was found to be significantly higher from Cur-SLNs (682.08 ± 6.33 ng/µg) compared to plain curcumin (162.4 ± 4.2 ng/µg). Additionally, the optimized formulation was found to be stable over the period of 90 days of storage. Hence, curcumin-loaded SLNs can be prepared using the proposed cost effective method, and can be utilized as an effective drug delivery system for the treatment of lung cancer, provided in vivo studies warrant a similar outcome.

13.
J Biomol Struct Dyn ; 41(21): 12171-12185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650997

RESUMO

Monoamine oxidases (MAOs) are flavo-enzymes that aid in the oxidative deamination of neurotransmitters like dopamine, serotonin, and epinephrine. MAO inhibitors are antidepressants that work by preventing the breakdown of brain neurotransmitters and regulating mood. MAO inhibitors that use the chromone (1-benzopyran-4-one) structure have been found to be quite effective in studies. The current study involves the creation of pharmacophore models, 3-D QSAR, virtual screening, and docking investigations, all of which are evaluated using various criteria. The investigation included 39 ligands that emerged pharmacophore AHRRR_1, as the best pharmacophore model with a survival score of 5.6485. The 3D QSAR investigation revealed a significant model with the values of R2 = 0.9064 and Q2 = 0.8239. Docking study revealed that compound 18 had the highest docking (-10.402 kcal/mol) score in the series and showed interactions with the essential amino acid TYR398 required for MAO inhibitory activity. ZINC compounds were screened using the created pharmacophore model, which was followed up with a virtual screening study. The ZINC compounds with the best XP docking scores are ZINC03113255, ZINC07777127, ZINC05166353 and ZINC09341502 (with docking scores -10.021, -9.486, -8.031 and -7.792 kcal/mol, respectively). ZINC03113255, which showed the best score, has binding interactions with amino acid residues, TYR326, TYR398 and LYS296 of monoamine oxidase B. The ADME analysis demonstrated the compound's drug-like characteristics. The findings of this study may be used in the development of chromone compounds that target the MAO inhibitor.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores da Monoaminoxidase , Relação Quantitativa Estrutura-Atividade , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Cromonas/farmacologia , Cromonas/química , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Neurotransmissores , Compostos de Zinco
14.
J Chromatogr Sci ; 61(4): 366-374, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35817401

RESUMO

A biosensitive analysis method development and validation was performed for accurate and rapid quantification of cefdinir (CDR) in human plasma by a liquid chromatography-tandem mass spectrometry technique coupled with electrospray ionization. Analysis was carried out using a C18 column with a flow rate of 1.0 mL/min and operating temperature of 30.0 ± 1°C. The drug was eluted by optimizing the m/z ratios of 396.20 â†’ 227.20 and 428.17 â†’ 241.10, for cefdinir and IS (internal standard), respectively. The intraday precision (%CV) for Cefdinir ranged from 2.8% and 6.7% as lower limit of quantification of quality control (LLOQ QC) and higher level of quantification of quality control (HQC QC), respectively, whereas these value were found to be as 3.0% and 5.6% for LLOQ and HQC, respectively after interday precision. Moreover, accuracy ranged from 107.70% (HQC QC) to 95.5% (LLOQ QC). The extraction mean recovery was found to be 83.91 ± 6.0% for cefdinir and 76.7 ± 6.23% for IS. The drug was stable throughout the analysis period. It was possible to analyze several plasma samples every day since each sample took <2.5 min to run. The method demonstrated successful quantification of CDR in human plasma, followed by pharmacokinetic profiles that were simple, accurate, sensitive and cost-effective.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cefdinir , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes
15.
J Biomol Struct Dyn ; 41(10): 4756-4769, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665636

RESUMO

HSP90, one important class of chaperons has been intensively investigated as a promising and novel class of drug target for cancer therapy from the past few decades. A series of 2-((4-resorcinolyl)-5-aryl-1, 2, 3-triazol-1-yl) acetate derivatives were taken in the present study for the generation of pharmacophore based models, predictive 3 D-QSAR models, docking and ZINC screening studies against HSP90. The investigation included 30 ligands which emerged DHRRR_1 having survival score of 5.59 was found the most effective pharmacophore model. The generated third PLS factor includes a model with significant Q2, R2, and R2 CV values as 0.62, 0.77, and 0.50, respectively. The molecular docking studies against HSP90 showed interactions with important amino acids such as GLY-97, ASN-106, THR-184, ASN-51, PHE-138 and SER-52 required for HSP90 inhibitory activity. According to the docking analysis compound 34 was the top scoring compound, had a docking score of -10.98 from the series and showed interactions with amino acids likeASP-93, GLY-97, AND ASP-102. Using pharmacophore characteristics, the virtual screening investigation was carried out and DHRRR_1 showed the potential ZINC compounds. The ZINC compounds ZINC72417069 and ZINC77522480 showed best XP docking scores (-8.205 and -7.103 consecutively) and the top-scoring compound ZINC72417069 displayed amino acid binding affinity with GLY-97, ASN-106, and THR-184 against HSP90, PDB ID: 2xjx. These ZINC compounds can be used as target for HSP90. The result of the study may further help to the scientist for the design and development of potential HSP90 inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas de Choque Térmico HSP90 , Aminoácidos , Triazóis/farmacologia
16.
Toxicol Mech Methods ; 33(5): 349-363, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36253940

RESUMO

Paracetamol is generally recommended for pain and fever. However, as per experimental and epidemiological data, widespread and irrational or long-term use of paracetamol may be harmful to human endocrine homeostasis, especially during pregnancy. Some researchers suggest that prenatal exposure to paracetamol might alter fetal development and also enhance the risk of reproductive disorders. An imbalance in the levels of these hormones may play a significant role in the emergence of various diseases, including infertility. Therefore, in this study, the interaction mechanism of paracetamol with reproductive hormone receptors was investigated by molecular docking, molecular dynamics (MD) simulations, and Poisson-Boltzmann surface area (MM-PBSA) for assessing paracetamol's potency to disrupt reproductive hormones. The results indicate that paracetamol has the ability to interact with reproductive hormone receptors (estrogen 1XP9; 1QKM with binding energy of -5.61 kcal/mol; -5.77 kcal/mol; androgen 5CJ6 - 5.63 kcal/mol; and progesterone 4OAR -5.60 kcal/mol) by hydrogen bonds as well as hydrophobic and van der Waals interactions to maintain its stability. In addition, the results of the MD simulations and MM-PBSA confirm that paracetamol and reproductive receptor complexes are stable. This research provides a molecular and atomic level understanding of how paracetamols disrupt reproductive hormone synthesis. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), Radius of Gyration and hydrogen bonding exhibited that paracetamol mimic at various attribute to bisphenol and native ligand.


Assuntos
Acetaminofen , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Acetaminofen/toxicidade , Ligação Proteica , Hormônios
17.
Plants (Basel) ; 11(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365289

RESUMO

With 19.3 million new cases and almost 10 million deaths in 2020, cancer has become a leading cause of death today. Curcumin and its analogues were found to have promising anticancer activity. Inspired by curcumin's promising anticancer activity, we prepared three semi-synthetic analogues by chemically modifying the diketone function of curcumin to its pyrazole counterpart. The curcumin analogues (3a−c) were synthesized by two different methods, followed by their DFT analyses to study the HOMO/LUMO configuration to access the stability of compounds (∆E = 3.55 to 3.35 eV). The curcumin analogues (3a−c) were tested for antiproliferative activity against a total of five dozen cancer cell lines in a single (10 µM) and five dose (0.001 to 100 µM) assays. 3,5-Bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(phenoxy)ethanone (3b) and 3,5-bis(4-hydroxy-3-methoxystyryl)-1H-pyrazole-1-yl-(2,4-dichlorophenoxy)ethanone (3c) demonstrated the most promising antiproliferative activity against the cancer cell lines with growth inhibitions of 92.41% and 87.28%, respectively, in a high single dose of 10 µM and exhibited good antiproliferative activity (%GIs > 68%) against 54 out of 56 cancer cell lines and 54 out of 60 cell lines, respectively. The compound 3b and 3c demonstrated the most potent antiproliferative activity in a 5-dose assay with GI50 values ranging between 0.281 and 5.59 µM and 0.39 and 0.196 and 3.07 µM, respectively. The compound 3b demonstrated moderate selectivity against a leukemia panel with a selectivity ratio of 4.59. The HOMO-LUMO energy-gap (∆E) of the compounds in the order of 3a > 3b > 3c, was found to be in harmony with the anticancer activity in the order of 3c ≥ 3b > 3a. Following that, all of the curcumin analogues were molecular docked against EGFR, one of the most appealing targets for antiproliferative activity. In a molecular docking simulation, the ligand 3b exhibited three different types of interactions: H-bond, π-π-stacking and π-cationic. The ligand 3b displayed three H-bonds with the residues Met793 (with methoxy group), Lys875 (with phenolic group) and Asp855 (with methoxy group). The π-π-stacking interaction was observed between the phenyl (of phenoxy) and the residue Phe997, while π-cationic interaction was displayed between the phenyl (of curcumin) and the residue Arg841. Similarly, the ligand 3c displayed five H-bonds with the residue Met793 (with methoxy and phenolic groups), Lys845 (methoxy group), Cys797 (phenoxy oxygen), and Asp855 (phenolic group), as well as a halogen bond with residue Cys797 (chloro group). Furthermore, all the compound 3a−c demonstrated significant binding affinity (−6.003 to −7.957 kcal/mol) against the active site of EGFR. The curcumin analogues described in the current work might offer beneficial therapeutic intervention for the treatment and prevention of cancer. Future anticancer drug discovery programs can be expedited by further modifying these analogues to create new compounds with powerful anticancer potentials.

18.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36355520

RESUMO

Anthraquinones (AQs) are present in foods, dietary supplements, pharmaceuticals, and traditional treatments and have a wide spectrum of pharmacological activities. In the search for anti-cancer drugs, AQ derivatives are an important class. In this study, anthraquinone aglycons chrysophanol (Chr), emodin (EM) and FDA-approved anticancer drug fluorouracil were analyzed by molecular docking studies against receptor molecules caspase-3, apoptosis regulator Bcl-2, TRAF2 and NCK-interacting protein kinase (TNIK) and cyclin-dependent protein kinase 2 (CDK2) as novel candidates for future anticancer therapeutic development. The ADMET SAR database was used to predict the toxicity profile and pharmacokinetics of the Chr and EM. Furthermore, in silico results were validated by the in vitro anticancer activity against HCT-116 and HeLa cell lines to determine the anticancer effect. According to the docking studies simulated by the docking program AutoDock Vina 4.0, Chr and EM had good binding energies against the target proteins. It has been observed that Chr and EM show stronger molecular interaction than that of the FDA-approved anticancer drug fluorouracil. In the in vitro results, Chr and EM demonstrated promising anticancer activity in HCT-116 and HeLa cells. These findings lay the groundwork for the potential use of Chr and EM in the treatment of human colorectal and cervical carcinomas.

19.
ACS Omega ; 7(43): 38207-38245, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340076

RESUMO

Pyrazolines are a significant class of heterocyclic compounds with essential biological activities. They are quite stable, which has inspired medicinal chemists to experiment with the ring's structure in many different ways to create a variety of pharmacological activities. The structures of numerous commercially available therapeutic agents contain a pyrazoline ring. Pyrazolines are well-known for their ability to treat neurodegenerative diseases. The neurodegenerative diseases that affect huge populations globally include Alzheimer's disease (AD), Parkinson's disease (PD), and psychiatric disorders. The neuroprotective properties of pyrazolines published since 2003 are covered in the current review. Structure-activity relationships (SARs), molecular docking simulation, anticholinesterase (anti-AChE), and monoamine oxidase (MAO A/B) inhibitory actions are all covered in this article. Pyrazolines were discovered to have beneficial effects in the management of AD and were revealed to be inhibitors of acetylcholine esterase (AChE) and beta-amyloid (Aß) plaques. They were discovered to be efficient against PD and also targeted MAO B and COMT. It was discovered that the pyrazolines block MAO A to treat psychiatric diseases. Pyrazolines are significant heteroaromatic scaffolds with a variety of biological functions. They were discovered to be remarkably stable and serve as an indispensable anchor for the development of new drugs. By blocking AChE and MAOs, they may be used to treat neurodegenerative diseases. The discussion outlined here is an essential and helpful resource for medicinal chemists who are investigating and applying pyrazolines in neurodegenerative research initiatives as well as to expedite future research programs on neurodegenerative disorders.

20.
Plants (Basel) ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145798

RESUMO

The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (ß-ketoacyl acyl carrier protein synthase), Candida albicans (1, 3-ß−D-glucan synthase), and Pseudomonas aeruginosa (Anthranilate-CoA ligase) were predicted using molecular docking and in silico/ADMET methods. Further, to validate the in-silico prediction, the antibacterial and antifungal potential of fenchone was evaluated against E. coli, P. aeruginosa, and C. albicans by determining minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and minimum fungicidal concentration (MFC). The lowest MIC/MBC values of fenchone against E. coli and P. aeruginosa obtained was 8.3 ± 3.6/25 ± 0.0 and 266.6 ± 115.4/533.3 ± 230.9 mg/mL, respectively, whereas the MIC/MFC value for C. albicans was found to be 41.6 ± 14.4/83.3 ± 28.8 mg/mL. It was observed that fenchone has a significant effect on antimicrobial activity (p < 0.05). Our findings demonstrated that fenchone at 1 mg/mL significantly reduced the production of biofilm (p < 0.001) in E. coli, P. aeruginosa, and C. albicans by 70.03, 64.72, and 61.71%, respectively, in a dose-dependent manner when compared to control. Based on these results, it has been suggested that the essential oil from plants can be a great source of pharmaceutical ingredients for developing new antimicrobial drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...